Tuesday, March 24, 2015

tanh^-1 x = 1/2 ln((1+x)/(1-x)) , -1 < x < 1 Prove

Given to prove
tanh^(-1) x =1/2 ln((1+x)/(1-x))
so let
tanh^(-1) x =y
=> x= tanh(y)
       x =(e^y - e^-y)/(e^y + e^-y)
=> (e^y + e^-y)*x = (e^y - e^-y )
=> xe^y + xe^-y = e^y - e^-y
=> (xe^(2y)+x)/e^y = (e^2y -1)/e^y
=> (xe^(2y)+x)= (e^(2y) -1)
=>(xe^(2y)+x)-e^(2y) +1=0
=>e^(2y)(x-1)+x+1=0
=>(x-1)(e^(2y)) =-(x+1)
=>e^(2y) = -(x+1)/(x-1)
=> e^(2y) = (1+x)/(1-x)
=> e^(2y)=(1+x)/(1-x)
=> e^(2y) = ((1+x)/(1-x))
=>2y=ln (((1+x)/(1-x)))
=>y=1/2 ln (((1+x)/(1-x)))
so,
tanh^(-1) x =1/2 ln((1+x)/(1-x))
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...