Monday, March 9, 2015

sum_(n=1)^oo 1/(nroot(4)(n)) Determine the convergence or divergence of the series.

To evaluate the given series: sum_(n=1)^oo 1/(nroot(4)n) , we may apply  radical property: root(a)(x^b) = x^(b/a) and Law of exponent: x^a*x^b= x^(a+b) .
The given series becomes :
sum_(n=1)^oo 1/(nroot(4)n) =sum_(n=1)^oo 1/(n*n^(1/4))
                    =sum_(n=1)^oo 1/n^(1/4+1)
                     =sum_(n=1)^oo 1/n^(5/4)
                     or  sum_(n=1)^oo 1/n^(1.25)
 The sum_(n=1)^oo 1/n^(1.25) is in a form of a p-series.
In general, the p-series follows the following form:
sum_(n=1)^oo 1/n^p =1/1^p + 1/2^p+ 1/3^p +1/4^p + 1/5^p +...
Recall the theorem for a p-series states that sum_(n=1)^oo 1/n^p is convergent if pgt1 and divergent if plt=1 .
Applying the theorem on the given series sum_(n=1)^oo 1/n^(1.25) , we compare n^(1.25) with n^p to determine the corresponding value: p =1.25 .
It satisfies pgt1 since 1.25gt1 .
Therefore, the given series sum_(n=1)^oo 1/(nroot(4)n) is convergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...