Sunday, February 1, 2015

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 24

At what rate is the water level rising when the water is 6 inches deep? Suppose that the base are isosceles triangles.



Recall that the volume $V$ = (Area of the base)(length) so,

$
\begin{equation}
\begin{aligned}
V &= \text{(Area of the triangle)(length)}\\
\\
V &= \frac{bh}{2}(10)\\
\\
V &= 5bh \text{; but } \frac{b}{h} = \frac{3}{1} \Longrightarrow b = 3h\\
\\
V &= 5(3h)h\\
\\
V &= 15h^2
\end{aligned}
\end{equation}
$

Taking the derivative with respect to time we got,


$
\begin{equation}
\begin{aligned}
\frac{dV}{dt} &= 15 \cdot \frac{d}{dh} \left( h^2 \right) \frac{dh}{dt}\\
\\
\frac{dV}{dt} &= 15(2h) \frac{dh}{dt}\\
\\
\frac{dV}{dt} &= 30h \frac{dh}{dt}\\
\\
\frac{dh}{dt} &= \frac{\frac{dV}{dt}}{30h} && \text{where} \frac{dV}{dt} = 12 \frac{\text{ft}^3}{\text{min}}, h = 6 \text{inches} \left( \frac{1\text{ft}}{12 \text{inches}}\right) = 0.5 ft\\
\\
\frac{dh}{dt} &= \frac{12}{30(0.5)}\\
\\
\frac{dh}{dt} &= 0.8 \frac{\text{ft}}{\text{min}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...