Sunday, February 1, 2015

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 100

Show two perpendicular lines that intersect on the $y$-axis and are both tangent to the parabola
$y = x^2$ by illustrating its diagram. State where do these lines intersect.




Since $y=x^2$ is an even function and the lines intersect on the $y$-axis and are perpendicular to each other;
the line makes an angle of $45^\circ$ to the positive and negative $x$-axis. Recall that the tangent of the
angle is equal to the slope of the line so,

$m = \tan(\pm 45^\circ)$
$m = \pm 1$

Also, the derivatives of the curve is equal to the slope so

$\displaystyle \frac{dy}{dx} = m \frac{dy}{dx}(x^2)$


$
\begin{equation}
\begin{aligned}
m &= 2x\\
m &= \pm 1\\
x &= \pm \frac{1}{2}\\
\end{aligned}
\end{equation}
$


Solving for $y$,


$
\begin{equation}
\begin{aligned}
y &= \left( \pm \frac{1}{2}\right)^2\\
y &= \frac{1}{4}
\end{aligned}
\end{equation}
$


Now, using point slope form to get the equation of the line
$y-y_1 = m(x-x_1)$


$
\begin{equation}
\begin{aligned}
y - \frac{1}{4} &= 1 \left( x- \frac{1}{2} \right)
&& \text{and} &&
y - \frac{1}{4} = -1 \left( x - \left( - \frac{1}{2} \right) \right) \\
y - \frac{1}{4} &= x - \frac{1}{2}
&& \phantom{x} &&
y - \frac{1}{4} = -x - \frac{1}{2} \\
y &= x - \frac{1}{2} + \frac{1}{4}
&& \phantom{x} &&
y = -x - \frac{1}{2} + \frac{1}{4}\\
y &= x - \frac{1}{4}
&& \phantom{x} &&
y = -x-\frac{1}{4}\\
\end{aligned}
\end{equation}
$


We can get the intersection by using the equations of the line we obtain

$
\begin{equation}
\begin{aligned}
x - \cancel{\frac{1}{4}} &= -x - \cancel{\frac{1}{4}}\\
2x &= 0\\
x &= 0
\end{aligned}
\end{equation}
$

Solving for $y$,


$
\begin{equation}
\begin{aligned}
y &= 0 - \frac{1}{4}\\
y &= \frac{1}{4}
\end{aligned}
\end{equation}
$


Therefore, the line intersects at point $\displaystyle\left(0,\frac{1}{4}\right)$ as shown from the graph

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...