Monday, February 23, 2015

Beginning Algebra With Applications, Chapter 3, 3.2, Section 3.2, Problem 162

Solve $5 [2-(2x-4)] = 2(5-3x)$ and check.


$
\begin{equation}
\begin{aligned}

5 [2-(2x-4)] =& 2(5-3x)
&& \text{Given equation}
\\
\\
5(2-2x+4) =& 10-6x
&& \text{Apply Distributive Property}
\\
\\
10 - 10x + 20 =& 10-6x
&& \text{Apply Distributive Property}
\\
\\
10-10 + 20 =& -6x+10x
&& \text{Add $10x$ and subtract } 10
\\
\\
20 =& 4x
&& \text{Simplify}
\\
\\
\frac{20}{4} =& \frac{\cancel{4}x}{\cancel{4}}
&& \text{Divide by } 4
\\
\\
5 =& x
&&


\end{aligned}
\end{equation}
$


Checking:


$
\begin{equation}
\begin{aligned}

5[2-(2(5)-4)] =& 2 [5-3(5)]
&& \text{Substitute } x = 5
\\
5(2-6) =& 2(-10)
&& \text{Simplify}
\\
-20 =& -20
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...