Friday, February 27, 2015

Calculus of a Single Variable, Chapter 9, 9.10, Section 9.10, Problem 19

Binomial series is an example of an infinite series. When it is convergent at |x|lt1 , we may follow the sum of the binomial series as (1+x)^k where k is any number. We may follow the formula:
(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2) ...(k-n+1))/(n!) x^n
or
(1+x)^k = 1 + kx + (k(k-1))/(2!) x^2 + (k(k-1)(k-2))/(3!)x^3 +(k(k-1)(k-2)(k-3))/(4!)x^4+...
To evaluate the given function f(x) = 1/sqrt(1-x) , we may apply radical property: sqrt(x) = x^(1/2) . The function becomes:
f(x) = 1/ (1-x)^(1/2)
Apply Law of Exponents: 1/x^n = x^(-n) to rewrite the function as:
f(x) = (1-x)^(-1/2)
or f(x)= (1 -x)^(-0.5)
This now resembles (1+x)^k form. By comparing "(1+x)^k " with "(1 -x)^(-0.5) or (1+(-x))^(-0.5) ”, we have the corresponding values:
x=-x and k =-0.5 .
Plug-in the values on the aforementioned formula for the binomial series, we get:
(1-x)^(-0.5) =sum_(n=0)^oo (-0.5(-0.5-1)(-0.5-2)...(-0.5-n+1))/(n!)(-x)^n
=1 + (-0.5)(-x) + (-0.5(-0.5-1))/(2!) (-x)^2 + (-0.5(-0.5-1)(-0.5-2))/(3!)(-x)^3 +(-0.5(-0.5-1)(-0.5-2)(-0.5-3))/(4!)(-x)^4+...
=1 + 0.5x + (-0.5(-1.5))/(1*2) (-1)^2x^2 + (-0.5(-1.5)(-2.5))/(1*2*3) (-1)^3x^3 +(-0.5(-1.5)(-2.5)(-3.5))/(1*2*3*4)(-1)^4x^4+...
=1 + 0.5x + 0.75/2 (1)x^2 + (-1.875)/6 (-1)x^3 +(6.5625)/24(1)x^4+...
=1 + 1/2x + (3x^2)/8 + (5x^3)/16 +(35x^4)/128+...
Therefore, the Maclaurin series for the function f(x) =1/sqrt(1-x) can be expressed as:
1/sqrt(1-x)=1 + x/2 + (3x^2)/8 + (5x^3)/16 +(35x^4)/128+...

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...