Friday, February 6, 2015

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 32

Differentiate $\displaystyle y = \frac{t}{(t - 1)^2}$



$
\begin{equation}
\begin{aligned}

y' =& \frac{(t^2 - 2t + 1) \displaystyle \frac{d}{dt} (t) - \left[ (t) \frac{d}{dt} (t^2 - 2t + 1) \right] }{(t - 1)^4}
&& \text{Apply Quotient Rule}
\\
\\
y' =& \frac{(t^2 - 2t + 1)(1) - [(t)(2t - 2)]}{(t - 1)^4}
&& \text{Expand the equation}
\\
\\
y' =& \frac{t^2 - \cancel{2t} + 1 - 2t^2 + \cancel{2t}}{(t - 1)^4}
&& \text{Combine like terms}
\\
\\
y' =& \frac{1 - t^2}{(t - 1)^4}
&& \text{Get the factor of numerator and denominator}
\\
\\
y' =& \frac{-1(t + 1) \cancel{(t - 1)} }{(t - 1)^3 \cancel{(t - 1)}}
&& \text{Cancel out like terms}
\\
\\
y' =& \frac{-1 (t + 1)}{(t - 1)^3} \text{ or } \frac{-t - 1}{(t - 1)^3}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...