Wednesday, January 7, 2015

College Algebra, Chapter 3, 3.4, Section 3.4, Problem 10

A function $\displaystyle g(x) = 5 + \frac{1}{2} x$. Determine the average rate of change of the function between $x = 1$ and $x = 5$.


$
\begin{equation}
\begin{aligned}

\text{average rate of change } =& \frac{g(b) - g(a)}{b - a}
&& \text{Model}
\\
\\
\text{average rate of change } =& \frac{g(5) - g(1)}{5 - 1}
&& \text{Substitute } a = 1 \text{ and } b = 5
\\
\\
\text{average rate of change } =& \frac{\displaystyle 5 + \frac{1}{2} (5) - \left[ 5 + \frac{1}{2} (1) \right] }{4}
&& \text{Simplify}
\\
\\
\text{average rate of change } =& \frac{\displaystyle 5 + \frac{5}{2} - 5 - \frac{1}{2} }{4}
&& \text{Combine like terms}
\\
\\
\text{average rate of change } =& \frac{\displaystyle \frac{4}{2}}{4}
&& \text{Simplify}
\\
\\
\text{average rate of change } =& \frac{2}{4}
&& \text{Reduce to lowest term}
\\
\\
\text{average rate of change } =& \frac{1}{2}
&& \text{Answer}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...