Saturday, January 24, 2015

Calculus: Early Transcendentals, Chapter 6, 6.1, Section 6.1, Problem 24

y=cos(x) , y=1-cos(x) ,0<=x<=pi
Refer the attached image, y=cos(x) is plotted in red color and y=1-cos(x) is plotted in blue color.
From the graph,
cos(x) is above (1-cos(x)) from 0 to pi/3 and
(1-cos(x)) is above cos(x) from pi/3 to pi.
Area of the region enclosed by the given curves A=int_0^(pi/3)(cos(x)-(1-cos(x)))dx+int_(pi/3)^pi((1-cos(x))-cos(x))dx
A=int_0^(pi/3)(2cos(x)-1)dx+int_(pi/3)^pi(1-2cos(x))dx
A=[2sin(x)-x]_0^(pi/3)+[x-2sin(x)]_(pi/3)^pi
A=((2sin(pi/3)-pi/3)-(2sin(0)-0))+(pi-2sin(pi)-(pi/3-2sin(pi/3))
A=(2*sqrt(3)/2-pi/3)+pi-pi/3+2*sqrt(3)/2
A=sqrt(3)-pi/3+pi-pi/3+sqrt(3)
A=pi/3+2sqrt(3)~~4.511

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...