Wednesday, January 21, 2015

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 70

If $f$ is a differentiable function, find an expression for the derivative of the following functions:

$
\begin{equation}
\begin{aligned}
\text{a. ) } y &= x^2 f(x) &&& \text{b. ) } y &= \frac{f(x)}{x^2}\\
\\
\text{c. ) } y &= \frac{x^2}{f(x)} &&& \text{d. ) } y &= \frac{1+xf(x)}{\sqrt{x}}
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
\text{a.) } y &= x^2 f(x)\\
\\
y'&= x^2 \frac{d}{dx}[f(x)] + f(x) \frac{d}{dx}(x^2) && \text{Using Product Rule}\\
\\
y'&= x^2 f'(x) + f(x)(2x) && \text{Simplify}\\
\\
\end{aligned}
\end{equation}\\
\quad \boxed{y'=x^2f'(x)+2xf(x)}
$



$
\begin{equation}
\begin{aligned}
\text{b.) } y &= \frac{f(x)}{x^2}\\
\\
y' &= \frac{x^2 \frac{d}{dx} [f(x)] - \left[ f(x) \frac{d}{dx} (x^2) \right]}{(x^2)^2}
&& \text{Using Quotient Rule}\\
\\
y' &= \frac{x^2 f'(x) - f(x)(2x)}{x^4}
&& \text{Factor } x \text{in the equation}\\
\\
y' &= \frac{\cancel{x}[xf'(x)-2f(x)]}{\cancel{(x)}(x^3)}
&& \text{Simplify the equation}\\
\\
\end{aligned}
\end{equation}\\
\quad \boxed{\displaystyle y' = \frac{xf'(x)-2f(x)}{x^3}}
$



$
\begin{equation}
\begin{aligned}
\text{c.) } y &= \frac{x^2}{f(x)}\\
\\
y'&= \frac{f(x) \frac{d}{dx}(x^2)- \left[ x^2 \frac{d}{dx} f(x)\right]}{[f(x)]^2}
&& \text{Using Quotient Rule}\\
\\
y'&= \frac{f(x)(2x)-x^2f'(x)}{[f(x)]^2}
&& \text{Simplify the equation}\\
\\

\end{aligned}
\end{equation}\\
\quad \boxed{\displaystyle y'= \frac{2xf(x) - x^2 f'(x)}{[f(x)]^2}}
$



$
\begin{equation}
\begin{aligned}
\text{d.) } y &= \frac{1+xf(x)}{\sqrt{x}}\\
\\
y'&= \frac{(x)^{\frac{1}{2}}\frac{d}{dx}[1+xf(x)]-\left[ (1+xf(x)) \frac{d}{dx}(x^{\frac{1}{2}})\right]}{(\sqrt{x})^2}
&& \text{Using Quotient Rule}\\
\\
y'&= \frac{(\sqrt{x})[0+xf'(x)+f(x)(1)] - [ 1+xf(x)] \left(\frac{1}{2\sqrt{x}}\right)}{x}
&& \text{Simplify the equation}\\
\\
y'&= \frac{2x^2f'(x)+2xf(x)-1+xf(x)}{2x\sqrt{x}}
&& \text{Combine like terms}\\
\\
\end{aligned}
\end{equation}\\
\quad \boxed{\displaystyle y'= \frac{2x^2f'(x)+3xf(x)-1}{2x\sqrt{x}}}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...