Tuesday, January 13, 2015

College Algebra, Chapter 1, 1.7, Section 1.7, Problem 48

Solve the inequality $\displaystyle \frac{1}{|2x-3|} \leq 5$. Express the answer using interval notation.


$
\begin{equation}
\begin{aligned}
\frac{1}{|2x-3|} &\leq 5\\
\\
\frac{1}{5} &\leq |2x -3| && \text{Divide by 5 and multiply } |2x-3|\text{ on each side}
\end{aligned}
\end{equation}
$

We have,


$
\begin{equation}
\begin{aligned}
2x -3 &\geq \frac{1}{5} && \text{and}& -(2x-3) &\geq \frac{1}{5} && \text{Divide each side by -1}\\
\\
2x -3 &\geq \frac{1}{5} && \text{and}& 2x -3 &\leq - \frac{1}{5} && \text{Add 3}\\
\\
2x &\geq \frac{9}{5} && \text{and} & 2x &\leq \frac{7}{5} && \text{Divide by 2}\\
\\
x &\geq \frac{9}{10} && \text{and} & x &\leq \frac{7}{10}
\end{aligned}
\end{equation}
$


The solution set is $\displaystyle \left(-\infty, \frac{7}{10} \right) \bigcup \left( \frac{9}{10}, \infty \right)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...