Saturday, January 10, 2015

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 30

Solve the system of equations $
\begin{equation}
\begin{aligned}

5x - z =& 38 \\
\\
\frac{2}{3}y + \frac{1}{4}z =& -17 \\
\\
\frac{1}{5}y + \frac{5}{6}z =& 4

\end{aligned}
\end{equation}
$.


$
\begin{equation}
\begin{aligned}

- \frac{1}{5} y + \frac{3}{40}z =& \frac{51}{10}
&& - \frac{3}{10} \times \text{ Equation 2}
\\
\\
\frac{1}{5}y + \frac{5}{6}z =& 4
&& \text{Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\frac{91}{120} z =& \frac{91}{10}
&& \text{Add}
\\
\\
z =& 12
&& \text{Multiply each side by } \frac{120}{91}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\frac{2}{3}y + \frac{1}{4}(12) =& -17
&& \text{Substitute } z = 12 \text{ in Equation 2}
\\
\\
\frac{2}{3}y + 3 =& -17
&& \text{Multiply}
\\
\\
\frac{2}{3}y =& -20
&& \text{Subtract each side by $3$}
\\
\\
y =& -30
&& \text{Multiply each side by } \frac{3}{2}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5x - 12 =& 38
&& \text{Substitute } z = 12 \text{ in Equation 1}
\\
5x =& 50
&& \text{Add each side by $12$}
\\
x =& 10
&& \text{Divide each side by $5$}

\end{aligned}
\end{equation}
$



The ordered triple is $\displaystyle \left( 10,-30,12 \right)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...