Saturday, January 24, 2015

Single Variable Calculus, Chapter 4, 4.8, Section 4.8, Problem 18

Use Newton's Method to find all roots of $x^5 = 5x - 2$ correct to six decimal places.

We rewrite the equation in standard form

$x^5 - 5x + 2 = 0$

So we let $f(x) =x^5 - 5x + 2$, then


$
\begin{equation}
\begin{aligned}

f'(x) =& \frac{d}{dx} (x^5) - 5 \frac{d}{dx} (x) + \frac{d}{dx} (2)
\\
\\
f'(x) =& 5x^4 - 5

\end{aligned}
\end{equation}
$


Using Approximation Formula


$
\begin{equation}
\begin{aligned}

x_{n + 1} =& x_n - \frac{f(x_n)}{f'(x_n)}
\\
\\
x_{n + 1} =& x_n - \frac{x^5_n - 5x_n + 2}{5x^4_n - 5}

\end{aligned}
\end{equation}
$








To find the initial approximation, we graph $y = x^5$ and $y = 5x - 2$. Based from the graph, they have three intersection points in $x$-coordinate where they are very close to $-1.6, 0.4$ and $1.4$. So we have $x_1 = -1.6, x_1 = 0.4$ and $x_1 = 1.4$

So we get


$
\begin{equation}
\begin{aligned}

& x_2 = x_1 - \frac{x_1^5 - 5x_1 + 2}{5x^4_1 - 5}
&&
&&&
\\
\\
& x_2 = -1.6 - \frac{(-1.6)^5 - 5 (-1.6) + 2}{5 (-1.6)^4 - 5}
&& x_2 = 0.4 - \frac{(0.4)^5 - 5 (0.4) + 2}{5 (0.4)^4 - 5}
&&& x_2 = 1.4 - \frac{(1.4)^5 - 5 (1.4) + 2}{5 (1.4)^4 - 5}
\\
\\
& x_2 \approx -1.582506
&& x_2 \approx 0.402102
&&& x_2 \approx 1.373378
\\
\\
& x_3 = -1.582506 - \frac{f(-1.582506)}{f'(-1.582506)}
&& x_3 = 0.402102 - \frac{f(0.402102)}{f'(0.402102)}
&&& x_3 = 1.373378 - \frac{f(1.373378)}{f'(1.373378)}
\\
\\
& x_3 \approx -1.582036
&& x_3 \approx 0.402102
&&& x_3 \approx 1.371886
\\
\\
& x_4 = -1.582036 - \frac{f(-1.582036)}{f'(-1.582036)}
&&
&&& x_4 = 1.371886 - \frac{f(1.371886)}{f'(1.371886)}
\\
\\
& x_4 \approx -1.582036
&&
&&& x \approx 1.371882
\\
\\
&
&&
&&& x_5 = 1.371882 - \frac{f(1.371882)}{f'(1.371882)}
\\
\\
&
&&
&&& x_5 \approx 1.371882

\end{aligned}
\end{equation}
$


Therefore, the roots are $x \approx -1.582036, x \approx 0.402102$ and $x \approx 1.371882$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...