Tuesday, November 5, 2019

College Algebra, Chapter 4, 4.1, Section 4.1, Problem 6

The graph of a quadratic function $\displaystyle f(x) = \frac{-1}{2} x^2 - 2x + 6$ is given.

a.) Find the coordinates of the vertex


$
\begin{equation}
\begin{aligned}

f(x) =& \frac{-1}{2} x^2 - 2x + 6
&&
\\
\\
f(x) =& \frac{-1}{2} (x^2 + 4x) + 6
&& \text{Factor } \frac{-1}{2} \text{ from the $x$-terms}
\\
\\
f(x) =& \frac{-1}{2} (x^2 + 4x + 4) + 6 - \left( \frac{-1}{2} \right) (4)
&& \text{Complete the square: add 4 inside parentheses, subtract } \left( \frac{-1}{2} \right) (4) \text{ outside}
\\
\\
f(x) =& \frac{-1}{2} (x + 2)^2 + 8
&& \text{Standard form}

\end{aligned}
\end{equation}
$


Using the formula of standard form of a quadratic function

$f(x) = a(x - h)^2 + k$

We know that the vertex is at $(h,k)$. So the vertex of function $f$ is at $(-2, 8)$.

b.) Find the maximum or minimum value of $f$.

Since the parabola opens downward the maximum value of $f$ is $f(-2) = 8$.

c.) Find the domain and range of $f$.

Based from the graph, the domain of $f$ is $[-6, 2]$ and the range is $[0, 8]$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...