Wednesday, November 6, 2019

2xy' - y = x^3 - x , y(4) = 2 Find the particular solution of the differential equation that satisfies the initial condition

Given 2xy' - y = x^3 - x
=>y' -(1/2x)y = (x^2-1)/2
when the first order linear ordinary differential equation has the form of
y'+p(x)y=q(x)
then the general solution is ,
y(x) = (int (e^(int p(x) dx) * q(x) dx + c )) / e^(int p(x) dx)
so,
y' -y/(2x) = (x^2-1)/2--------(1)
y'+p(x)y=q(x)---------(2)
on comparing both we get,
p(x) = -1/(2x) and q(x)=(x^2-1)/2
so on solving with the above general solution we get:
y(x) = (int (e^(int p(x) dx) * q(x) dx + c )) / e^(int p(x) dx)
=((int e^(int -1/(2x) dx) *((x^2-1)/2)) dx +c)/ e^(int(-1/2x) dx)
first we shall solve
e^(int  -1/(2x) dx)=e^(-ln(2x)/2)=1/sqrt(2x)      
so
proceeding further, we get
y(x) =(int 1/sqrt(2x) *((x^2-1)/2) dx +c)/(1/sqrt(2x) )
y(x) =(1/(2*sqrt(2))(int 1/sqrt(x) *((x^2-1)) dx +c)/(1/sqrt(2x)) )
=(1/(2*sqrt(2))(int1/sqrt(x) *((x^2-1)) dx +c)/(1/sqrt(2x) ))
=(1/(2*sqrt(2))(int1/sqrt(x) *(x^2)dx-int1/sqrt(x) *1 dx +c)/(1/sqrt(2x) ))
=((1/(2*sqrt(2))(2x^(5/2)/5-2sqrt(x)) +c)/(1/sqrt(2x) ))
now to find the particular solution of differential equation we have y(4)=2
so we can find the value of c
y(x)=((1/(2*sqrt(2))(2x^(5/2)/5-2sqrt(x)) +c)/(1/sqrt(2x) ))
=>((1/(2*sqrt(2))(2x^(5/2)/5-2sqrt(x)) +c)*(sqrt(2x) ))
=>((1/(2)(2x^(5/2)/5-2sqrt(x)) +c)*(sqrt(x) ))
=>((x^(5/2)/5-sqrt(x) +C)*(sqrt(x) ))
=>((x^(3)/5-(x) +C*sqrt(x))))
=> y(4) =4^(3)/5-(4) +C*sqrt(4)
=> 2 = 64/5-(4) +C*sqrt(4)
=> 2 = 64/5 -4+2c
=> 6- 64/5 =2c
=> -34/5 =2c
=> c= -17/5
y(x)=x^(3)/5-(x) -17/5sqrt(x)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...