Friday, October 4, 2019

Calculus: Early Transcendentals, Chapter 5, 5.5, Section 5.5, Problem 69

You need to use the following substitution ln x=u, such that:
ln x=u=>(dx)/x= du
int_e^(e^4) (dx)/(x*sqrt(ln x)) = int_(u_1)^(u_2) (du)/(sqrt u)
int_(u_1)^(u_2) (du)/(sqrt u) = 2sqrt u|_(u_1)^(u_2)
Replacing back ln x for u yields:
int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln x)|_e^(e^4)
Using Leibniz-Newton theorem yields:
int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt (ln e^4) - 2sqrt (ln e)
int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2sqrt 4 - 2sqrt 1
int_e^(e^4) (dx)/(x*sqrt(ln x)) = 4 - 2
int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2
Hence, evaluating the definite integral, yields int_e^(e^4) (dx)/(x*sqrt(ln x)) = 2.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...