Thursday, October 17, 2019

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 12

Determine the function $\displaystyle h(x) = \ln \left( x + \sqrt{x^2 - 1} \right)$

$
\begin{equation}
\begin{aligned}
h'(x) &= \frac{d}{dx} \ln \left( x+ \sqrt{x^2-1} \right)\\
\\
h'(x) &= \frac{1}{x+\sqrt{x^2-1}} \cdot \frac{d}{dx} \left( x + \sqrt{x^2+1} \right)\\
\\
h'(x) &= \frac{1}{x+\sqrt{x^2-1}} \cdot \frac{d}{dx} \left[ x + \left( x^2 -1 \right)^{\frac{1}{2}}\right]\\
\\
h'(x) &= \frac{1}{x+\sqrt{x^2-1}} \left[ 1 + \frac{1}{2} \left( x^2 - 1 \right)^{\frac{-1}{2}} \cdot \frac{d}{dx} \left( x^2 - 1 \right) \right]\\
\\
h'(x) &= \frac{1}{x+\sqrt{x^2-1}} \left[ 1 + \frac{\cancel{2}x}{\cancel{2}(x^2 -1)^\frac{1}{2}} \right]\\
\\
h'(x) &= \frac{1}{x+\sqrt{x^2-1}} \left[ 1 + \frac{x}{(x^2-1)^\frac{1}{2}} \right]\\
\\
h'(x) &= \frac{1}{x+\sqrt{x^2-1}} \left[ \frac{(x^2-1)^{\frac{1}{2}}+x}{(x^2-1)^{\frac{1}{2}}} \right]\\
\\
h'(x) &= \frac{(x^2-1)^{\frac{1}{2}}+x}{x(x^2-1)^{\frac{1}{2}}+x^2-1} \qquad \text{ or } \qquad h'(x) = \frac{\sqrt{x^2-1}+x}{x\sqrt{x^2-1}+x^2-1}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...