Saturday, October 12, 2019

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 2

Evaluate each limit if it exists. If the limit does not exist, explain why. Use the given graphs of $f$ and $g$





$
\begin{equation}
\begin{aligned}
\text{(a) }& \lim\limits_{x \rightarrow 2} \quad [f(x)+g(x)] &
\text{(b) }& \lim\limits_{x \rightarrow 1} \quad [f(x)+g(x)]\\
\text{(c) }& \lim\limits_{x \rightarrow 0} \quad [f(x)g(x)] &
\text{(d) }& \lim\limits_{x \rightarrow -1} \quad \frac{f(x)}{g(x)}\\
\text{(e) }& \lim\limits_{x \rightarrow 2} \quad [x^3f(x)] &
\text{(f) }& \lim\limits_{x \rightarrow 2} \quad \sqrt{3 + f(x)}
\end{aligned}
\end{equation}
$


a.) $ \lim\limits_{x \rightarrow 2} \quad [f(x)+g(x)] $

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \quad [f(x)+g(x)] & = \lim\limits_{x \rightarrow 2} f(x) + \lim\limits_{x \rightarrow 2} g(x) && \text{(Substitute the values of }f(x) \text{ and } g(x))\\
\lim\limits_{x \rightarrow 2} \quad [f(x)+g(x)] & = 2 + 0 && \text{(Simplify)} \\
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 2} \quad [f(x)+g(x)] = 2 }
$


b.) $ \lim\limits_{x \rightarrow 1} \quad [f(x)+g(x)] $

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 1} \quad [f(x)+g(x)] & = \lim\limits_{x \rightarrow 1} f(x) + \lim\limits_{x \rightarrow 1} g(x) && \text{(Substitute the values of }f(x) \text{ and } g(x))\\
\lim\limits_{x \rightarrow 1} \quad f(x) & = 1 \\
\lim\limits_{x \rightarrow 1} \quad g(x) & = \text{Does not exist}\\
\end{aligned}
\end{equation}\\
\fbox{The given equation does not exist because the left and the right limits of the function $g(x)$ are different.}
$


c.) $ \lim\limits_{x \rightarrow 0} \quad [f(x)g(x)] $

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 0} \quad [f(x)g(x)] &= \lim\limits_{x \rightarrow 0} f(x) \cdot \lim\limits_{x \rightarrow 0} g(x) && \text{(Substitute the values of }f(x) \text{ and } g(x))\\
\lim\limits_{x \rightarrow 0} \quad [f(x)g(x)] &= (0)(1.5) && \text{(Simplify)}
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 0} \quad [f(x)g(x)] = 0}
$


d.) $ \lim\limits_{x \rightarrow -1} \quad \frac{f(x)}{g(x)} $

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow -1} \quad \displaystyle \frac{f(x)}{g(x)} &= \frac{\lim\limits_{x \rightarrow -1} \quad f(x)}{\lim\limits_{x \rightarrow -1} \quad g(x)} && \text{(Substitute the values of }f(x) \text{ and } g(x))\\
\lim\limits_{x \rightarrow -1} \quad \displaystyle \frac{f(x)}{g(x)} &= \frac{-1}{0} && \text{(Does not exist)}\\
\end{aligned}
\end{equation}\\
\boxed{\text{The limit does not exist, the function is undefined because the denominator is zero.}}
$



e.) $ \lim\limits_{x \rightarrow 2} \quad [x^3f(x)] $

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \quad [x^3f(x)] &= \lim\limits_{x \rightarrow 2} x^3 \cdot \lim\limits_{x \rightarrow 2} f(x)\\
\lim\limits_{x \rightarrow 2} \quad [x^3f(x)] &= (2)^3(2)\\
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 2} \quad [x^3f(x)] = 16}
$


f.) $ \lim\limits_{x \rightarrow 2} \quad \sqrt{3 + f(x)} $

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \quad \sqrt{3+f(x)} &&& \text{(Substitute the value of } f(x))\\
\lim\limits_{x \rightarrow 2} \quad \sqrt{3+f(x)} &= \sqrt{3+2} && \text{(Simplify)}
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 2} \quad \sqrt{3+f(x)} = \sqrt{5}}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...