Friday, June 8, 2018

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 54

Solve the Logarithmic Equation $\ln(x -1) + \ln (x +2) = 1$ for $x$.


$
\begin{equation}
\begin{aligned}
\ln(x -1) + \ln (x +2) &= 1\\
\\
\ln(x -1)(x+2) &= 1 && \text{Laws of Logarithms}\\
\\
e^{\ln(x-1)(x+2)} &= e^1 && \text{Raise $e$ to each side}\\
\\
(x - 1) (x + 2) &= e && \text{Expand}\\
\\
x^2 + x - 2 &= e\\
\\
x^2 + x &= e + 2 && \text{Add 2}\\
\\
x^2 + x + \frac{1}{4} &= e + 2 + \frac{1}{4} && \text{Complete the square: Add } \left( \frac{1}{2} \right)^2 = \frac{1}{4}\\
\\
\left( x + \frac{1}{2} \right)^2 &= e + \frac{9}{4} && \text{Simplify}\\
\\
x + \frac{1}{2} &= \pm \sqrt{e + \frac{9}{4}} && \text{Take the square root}\\
\\
x &= -\frac{1}{2} \pm \sqrt{e + \frac{9}{4}} && \text{Subtract } \frac{1}{2}
\end{aligned}
\end{equation}
$


We have, $\displaystyle x = -\frac{1}{2}+\sqrt{e+\frac{9}{4}} \text{ and } x = -\frac{1}{2} - \sqrt{e + \frac{9}{4}}$
The only solution of the given equation is $\displaystyle x = -\frac{1}{2} + \sqrt{e + \frac{9}{4}}$,
since the natural logarithm of a negative value is undefined.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...