Saturday, June 16, 2018

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 42

Determine the functions $f \circ g, \quad g \circ f, \quad f \circ f$ and $g \circ g$ and their domains if $\displaystyle f(x) = \frac{1}{\sqrt{x}}$ and $g(x) = x^2 - 4x$
For $f \circ g$,

$
\begin{equation}
\begin{aligned}
f \circ g &= f(g(x)) && \text{Definition of } f\circ g\\
\\
f \circ g &= \frac{1}{\sqrt{x^2 - 4x}} && \text{Definition of } f
\end{aligned}
\end{equation}
$

Since the function involves square root in the denominator, we want

$
\begin{equation}
\begin{aligned}
x^2 - 4x &> 0\\
\\
x(x-4) &> 0
\end{aligned}
\end{equation}
$

The factors on the left hand side are $x$ and $x-4$. These factors are zero when $x$ is and $4$, respectively. These numbers divide the number line into interval
$(-\infty,0), (0,4), (4, \infty)$
By testing some points on the interval...



Thus, the domain where $x(x-4) > 0$ is $(-\infty,\infty) \bigcup (4, \infty)$

For $g \circ f$,

$
\begin{equation}
\begin{aligned}
g \circ f &= g (g(x)) && \text{Definition of } g \circ f\\
\\
g \circ f &= \left( \frac{1}{\sqrt{x}} \right)^2 - 4 \left( \frac{1}{\sqrt{x}} \right) && \text{Definition of } f\\
\\
g \circ f &= \frac{1}{x} - \frac{4}{\sqrt{x}} && \text{Definition of } g
\end{aligned}
\end{equation}
$

Since the function is a rational function that invovles square root, so the domain of $g \circ f $ is $(0, \infty)$

For $f \circ f$,

$
\begin{equation}
\begin{aligned}
f \circ f &= f(f(x)) && \text{Definition of } f\circ f\\
\\
f \circ f &= \frac{1}{\sqrt{\frac{1}{\sqrt{x}}}} && \text{Definition of } f\\
\\
f \circ f &= \frac{1}{\frac{\sqrt{1}}{\sqrt{x}}} && \text{Simplify}\\
\\
f \circ f &= \sqrt[4]{x}
\end{aligned}
\end{equation}
$

We know that if the index is any even number, the radicand can't have a negative value. So the domain if $f \circ f$ is $[0, \infty)$

For $g \circ g$,

$
\begin{equation}
\begin{aligned}
g \circ g &= g(g(x)) && \text{Definition of } g \circ g\\
\\
g \circ g &= \left( x^2 - 4x \right)^2 -4 \left( x^2 - 4x \right) && \text{Definition of } g \\
\\
g \circ g &= x^4 - 8x^3 + 16x^2 - 4x^2 + 16x && \text{Simplify}\\
\\
g \circ g &= x^4 - 8x^3 + 12x^2 + 16x && \text{Definition of } g
\end{aligned}
\end{equation}
$

The domain of $g \circ g$ is $(-\infty,\infty)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...