Monday, June 18, 2018

Calculus of a Single Variable, Chapter 5, 5.2, Section 5.2, Problem 18

int(x^3-6x-20)/(x+5)dx
Let's evaluate the integral by applying integral substitution,
Let u=x+5, =>x=u-5
du=dx
int(x^3-6x-20)/(x+5)dx=int((u-5)^3-6(u-5)-20)/udu
=int((u^3-5^3-3u^2*5+3u*5^2)-6u+30-20)/udu
=int(u^3-125-15u^2+75u-6u+10)/udu
=int(u^3-15u^2+69u-115)/udu
=int(u^2-15u+69-115/u)du
Now apply the sum rule,
=intu^2du-int15udu-int115/udu+int69du
=intu^2du-int15udu-115int(du)/u+69intdu
Use the following common integrals,
intx^ndx=x^(n+1)/(n+1)
and int1/xdx=ln(|x|)
=u^3/3-15u^2/2-115ln|u|+69u
Substitute back u=x+5,
=(x+5)^3/3-15/2(x+5)^2-115ln|x+5|+69(x+5)
Add a constant C to the solution,
=(x+5)^3/3-15/2(x+5)^2+69(x+5)-115ln|x+5|+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...