Saturday, June 9, 2018

College Algebra, Chapter 2, 2.4, Section 2.4, Problem 38

Find an equation of the line that pass through $\displaystyle (-2, -11)$ and perpendicular to the line passing through $(1,1)$ and $(5, -1)$.

First, we get determine the perpendicular line by using the two point form.


$
\begin{equation}
\begin{aligned}

y - y_1 =& \left( \frac{y_2 - y_1}{x_2 - x_1} \right) (x - x_1)
\\
\\
y - 1 =& \left( \frac{-1 - 1}{5 - 1} \right) (x - 1)
\\
\\
y - 1 =& \left( \frac{-2}{4} \right) (x - 1)
\\
\\
y - 1 =& \frac{-1}{2} (x - 1)
\\
\\
y - 1 =& \frac{-1}{2} x + \frac{1}{2}
\\
\\
y =& \frac{-1}{2} x + \frac{1}{2}

\end{aligned}
\end{equation}
$


Therefore, the slope of the unknown line is $m = 2$.

By using Point Slope Form


$
\begin{equation}
\begin{aligned}

y =& mx + b
&&
\\
\\
y =& -2x + b
&& \text{Substitute } m =2
\\
\\
-11 =& 2(-2) + b
&& \text{Solve for } b
\\
\\
b =& -7
&&

\end{aligned}
\end{equation}
$


Thus, the equation of the line is..

$y = 2x - 7$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...