Monday, May 7, 2018

Precalculus, Chapter 5, 5.4, Section 5.4, Problem 20

sin((-7pi)/12)=-sin((7pi)/12)
=-sin(pi/3+pi/4)
using the identity sin(x+y)=sin(x)cos(y)+cos(x)sin(y)
=-(sin(pi/3)cos(pi/4)+cos(pi/3)sin(pi/4))
=-(sqrt(3)/2*1/sqrt(2)+1/2*1/sqrt(2))
=-(sqrt(3)+1)/(2sqrt(2))
rationalizing the denominator,
=(-sqrt(2)(sqrt(3)+1))/4
cos((-7pi)/12)=cos((7pi)/12)
=cos(pi/3+pi/4)
using the identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y)
=cos(pi/3)cos(pi/4)-sin(pi/3)sin(pi/4)
=(1/2*1/sqrt(2)-sqrt(3)/2*1/sqrt(2))
=(1-sqrt(3))/(2sqrt(2))
rationalizing the denominator,
=(sqrt(2)(1-sqrt(3)))/4
=(sqrt(2)-sqrt(6))/4
tan((-7pi)/12)
=sin((-7pi)/12)/cos((-7pi)/12)
plug in the values evaluated above,
=((-sqrt(2)(sqrt(3)+1))/4)/((sqrt(2)-sqrt(6))/4)
=(-sqrt(2)(sqrt(3)+1))/(sqrt(2)-sqrt(6))
rationalize the denominator,
=-((sqrt(6)+sqrt(2))(sqrt(2)+sqrt(6)))/((sqrt(2)-sqrt(6))(sqrt(2)+sqrt(6)))
=-(2sqrt(3)+6+2+2sqrt(3))/(2-6)
=-(4sqrt(3)+8)/(-4)
=sqrt(3)+2

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...