Wednesday, May 16, 2018

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 18

Determine the point on the line $6x + y = 9$ that is closes to the point $(-3,1)$
By using formula to the point $(-3,1)$ and $(x,y)$ from the line that is $(x,-6x+9)$

$
\begin{equation}
\begin{aligned}
d &= \sqrt{(x+3)^2 + (-6x+9-1)^2} = \sqrt{(x+3)^2 + (-6x + 8)^2}\\
\\
d &= \sqrt{x^2 + 6x + 9 + 36x^2 - 96x + 64}\\
\\
d &= \sqrt{37x^2 - 90x + 73}
\end{aligned}
\end{equation}
$


If we take the derivative of the distance, by using Chain Rule...


$
\begin{equation}
\begin{aligned}
d' &= \frac{1}{2} (37x^2 - 90x + 73)^{-\frac{1}{2}} (74x - 90)\\
\\
d' &= \frac{37x - 45}{\sqrt{37x^2 - 90x + 73}}
\end{aligned}
\end{equation}
$


when $d'= 0$,
$ 0 = 37x - 45$

Then, the critical number is $\displaystyle x = \frac{45}{37}$

when $\displaystyle x = \frac{45}{37}$, then
$\displaystyle y = - 6 \left( \frac{45}{37} \right) + 9 = \frac{63}{37}$
Therefore, the point closes to $(-3,1)$ on the line $6x + y = 9$ is $\displaystyle \left( \frac{45}{37}, \frac{63}{37} \right)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...