Sunday, May 27, 2018

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 3

Determine the $\lim\limits_{x \rightarrow -2} (3x^4+2x^2-x+1)$ and justify each step by indicating the appropriate limit law(s).


$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow -2} (3x^4+2x^2-x+1) &= \lim\limits_{x \rightarrow -2} 3x^4 +
\lim\limits_{x \rightarrow -2} 2x^2 -
\lim\limits_{x \rightarrow -2} x +
\lim\limits_{x \rightarrow -2} 1
&& \text{(Sum and difference Law)}\\
\lim\limits_{x \rightarrow -2} (3x^4+2x^2-x+1) &= 3\lim\limits_{x \rightarrow -2} x^4 +
2\lim\limits_{x \rightarrow -2} x^2 -
\lim\limits_{x \rightarrow -2} x +
\lim\limits_{x \rightarrow -2} 1
&& \text{(Constant Multiple Law)}\\
\lim\limits_{x \rightarrow -2} (3x^4+2x^2-x+1) &= 3\lim\limits_{x \rightarrow -2} x^4 +
2\lim\limits_{x \rightarrow -2} x^2 -
\lim\limits_{x \rightarrow -2} x +
1
&& \text{(Special Limit, Constant Multiple Law.)}\\
\lim\limits_{x \rightarrow -2} (3x^4+2x^2-x+1) &= 3(-2)^4 +
2(-2)^2 -
(-2) +
1
&& \text{(Power Special Limit)}
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow -2} (3x^4+2x^2-x+1) = 59}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...