Thursday, May 31, 2018

Intermediate Algebra, Chapter 3, 3.3, Section 3.3, Problem 38

Determine an equation of the line that satisfies the condition "through $(-1,6)$; slope $\displaystyle - \frac{5}{6}$".

(a) Write the equation in standard form.

Use the Point Slope Form of the equation of a line with $(x_1,y_1) = (-1,6)$ and $m = \displaystyle - \frac{5}{6}$


$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1)
&& \text{Point Slope Form}
\\
\\
y - 6 =& - \frac{5}{6} [x - (-1)]
&& \text{Substitute $x = -1, y = 6$ and } m = - \frac{5}{6}
\\
\\
y - 6 =& - \frac{5}{6}x - \frac{5}{6}
&& \text{Distributive Property}
\\
\\
6y - 36 =& -5x - 5
&& \text{Multiply each side by $6$}
\\
\\
5x + 6y =& -5 + 36
&& \text{Add each side by $(5x + 36)$}
\\
\\
5x + 6y =& 31
&& \text{Standard Form}

\end{aligned}
\end{equation}
$



(b) Write the equation in slope-intercept form.


$
\begin{equation}
\begin{aligned}

5x + 6y =& 31
&& \text{Standard Form}
\\
\\
6y =& -5x + 31
&& \text{Subtract each side by $5x$}
\\
\\
y =& - \frac{5}{6}x + \frac{31}{6}
&& \text{Slope Intercept Form}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...