Saturday, May 12, 2018

Obtain the line integral

Given f=x^2z ds
x=cost, y=2t, z=sint    for 0<=t<=\pi
We have to find the line integral i.e.
\int_{c} f(x,y,z)ds=\int_{c} x^2z ds
                 = \int_{c} f(x(t),y(t),z(t)). ||r'(t)|| dt
where ,
||r'(t)||=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2+(\frac{dz}{dt})^2}
          = \sqrt{sin^2t+2^2+cos^2t}
          = \sqrt{1+4}
          = sqrt{5}
 
Therefore we have,
\int_{c}f(x,y,z)ds=\int_{0}^{\pi}cos^2tsint . \sqrt{5} dt
                 = \sqrt{5}\int_{0}^{\pi}cos^2tsint dt
Take , cost=u, so cos^2t=u^2
Therefore,  -sint dt=du
When t=0, then u=1 and when 
         t= \pi, then u=-1
Hence we have,
\int_{c}f(x,y,z)ds=\sqrt{5}\int_{1}^{-1}-u^2 du
                 = \sqrt{5}\int_{-1}^{1}u^2du
                  = \sqrt{5}[\frac{u^3}{3}]_{-1}^{1}
                  = \frac{2\sqrt{5}}{3}
 
 
 
(b)  Now we have the curve  16y=x^4 f(x,y)=16y-x^4 parameterized by  the curves 
  x=2t, y=t^4   for 0<=t<=1
We have to find the line integral :
\int_{c} f(x,y) ds=\int_{c} xy ds
               =\int_{c} f(x(t),y(t))||r'(t)|| dt
 where,
||r'(t)||=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}
          =\sqrt{2^2+(4t^3)^2}
           = \sqrt{4+16t^6}
           = 2\sqrt{1+4t^6}
 
Therefore we have,
\int_{c} f(x,y) ds=\int_{0}^{1}2t^5. 2\sqrt{1+4t^6} dt
               =4\int_{0}^{1}t^5\sqrt{1+4t^6} dt
Now take,
\sqrt{1+4t^6}=u
Therefore,
\frac{1}{2\sqrt{1+4t^6}}.24t^5 dt=du
i.e. 12t^5 dt=udu
i.e. t^5dt=\frac{u}{12} du
When t=0, then u=1 and when
         t=1, then u= \sqrt{5}
Therefore we have,
\int_{c} f(x,y)ds=4\int_{1}^{\sqrt{5}}\frac{u^2}{12} du
               =\int_{1}^{\sqrt{5}}\frac{u^2}{3} du
                =[\frac{u^3}{9}]_{1}^{\sqrt{5}}
                 = \frac{5\sqrt{5}-1}{9} 
                 = 1.131             
 
http://tutorial.math.lamar.edu/Classes/CalcIII/LineIntegralsPtI.aspx

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...