Thursday, May 3, 2018

Intermediate Algebra, Chapter 2, 2.2, Section 2.2, Problem 10

Solve $\displaystyle S = 2 \pi rh + 2 \pi r^2$ for $h$.


$
\begin{equation}
\begin{aligned}

S =& 2 \pi rh + 2 \pi r^2
&& \text{Given equation}
\\
S - 2 \pi r^2 =& 2 \pi rh + 2 \pi r^2 - 2 \pi r^2
&& \text{Subtract each side by $2 \pi r^2$}
\\
S - 2 \pi r^2 =& 2 \pi rh
&& \text{Combine like terms}
\\
S - 2 \pi r^2 =& (2 \pi r)h
&& \text{Associative property}
\\
\frac{S - 2 \pi r^2}{2 \pi r} =& \frac{(2 \pi r)}{2 \pi r}
&& \text{Divide each side by $2 \pi r$}
\\
h =& \frac{S - 2 \pi r^2}{2 \pi r}
&& \text{Solve for $h$}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...