Tuesday, May 8, 2018

Calculus: Early Transcendentals, Chapter 5, 5.5, Section 5.5, Problem 67

You need to use the following substitution x-1=u , such that:
x-1=u=>(dx)= du
int_1^2 x*sqrt(x-1)dx = int_(u_1)^(u_2) (u+1)*u^(1/2) du
int_(u_1)^(u_2) (u+1)*u^(1/2) du = int_(u_1)^(u_2) u^(3/2) du + int_(u_1)^(u_2) u^(1/2) du
int_(u_1)^(u_2) (u+1)*u^(1/2) du = ((2/5)*u^(5/2) + (2/3)*u^(3/2))|_(u_1)^(u_2)
Replacing back x-1 for u yields:
int_1^2 x*sqrt(x-1)dx = ((2/5)*(x-1)^(5/2) + (2/3)*(x-1)^(3/2))|_(1)^(2)
Using Leibniz-Newton theorem yields:
int_1^2 x*sqrt(x-1)dx = ((2/5)*(2-1)^(5/2) + (2/3)*(2-1)^(3/2))
int_1^2 x*sqrt(x-1)dx =2/5 + 2/3
int_1^2 x*sqrt(x-1)dx =(6 + 10)/15
int_1^2 x*sqrt(x-1)dx =16/15
Hence, evaluating the definite integral, yields int_1^2 x*sqrt(x-1)dx =16/15.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...