Friday, January 5, 2018

Single Variable Calculus, Chapter 1, 1.2, Section 1.2, Problem 26

The average distances d of the planets from the sun and their periods T (time of revolution in years) are tabulated as follows.


$
\begin{array}{|c|c|c|}
\hline
\text{Planet} & d & t\\
\hline
\text{Mercury} & 0.387& 0.241\\
\text{Venus} &0.723 &0.615\\
\text{Earth} &1.000 &1.000\\
\text{Mars} &1.523 &1.881\\
\text{Jupiter} &5.203& 11.861\\
\text{Saturn} &9.541 &29.457\\
\text{Uranus} &19.190 &84.008\\
\text{Neptune} &30.086 &164.784\\
\hline
\end{array}
$


a.) To fit a power model, we will use a 2 sets of the given data, Mercury and Venus.

$
\begin{equation}
\begin{aligned}
\text{Having the Power Function: }T = a(d)^{b} ;\text{ where }T &= \text{ period }(\text{Time of revolution in years}) \\
d &= \text{ distances of the planets from the sun}
\end{aligned}
\end{equation}
$


Then, we need to find the values of $a$ and $b$ that will satisfy all the given data.

First, we will use the data of planet Mercury.



$
\begin{equation}
\begin{aligned}
T &= a(d)^b; \quad \text{ where } \quad T = 0.241, \quad d = 0.387\\
0.241 &= a(0.387)^b \quad (\text{solving for }a)\\
a &= \displaystyle \frac{0.241}{(0.387)^b} \quad \text{Equation 1}
\end{aligned}
\end{equation}
$


Next, we will use the data of planet Venus.


$
\begin{equation}
\begin{aligned}
T &= a (d)^b; \quad \text{ where } \quad T = 0.615 , \quad d = 0.723\\
0.615 &= a \left( 0.723\right)^b\\
a &= \displaystyle \frac{0.615}{(0.723)^b} \quad \text{Equation 2}
\end{aligned}
\end{equation}
$


Solve the value of b using equations 1 and 2.



$
\begin{equation}
\begin{aligned}
\displaystyle \frac{0.241}{(0.387)^b} &= \displaystyle \frac{0.615}{(0.723)^b} \qquad \text{(applying cross multiplication)}\\
\displaystyle \left(\frac{0.723}{0.387}\right)^b &= \displaystyle \frac{0.615}{0.241} \qquad \quad \text{(tabing the natural logarithm of both sides)}\\
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
b &\left[ ln \left( \displaystyle \frac{0.723}{0.387}\right)\right] = ln \left(\displaystyle \frac{0.615}{0.241} \right) \qquad \text{(using the property of natural logarithm we can now solve for the value of } b)\\

b &= \displaystyle
\frac{
\text{ln} \displaystyle \left(\frac{0.615}{0.241}\right)
}
{
\text{ln} \displaystyle \left(\frac{0.725}{0.387}\right)
}\\

\end{aligned}
\end{equation}\\
\boxed{b = 1.4990}
$

Now we can solve for the value of $a$ by substituting the value of $b$ in either equation 1 and 2



$
\begin{equation}
\begin{aligned}
a &= \displaystyle \frac{0.241}{(0.387)} b \quad \text{ where } \quad b = 1.4990\\
a &= \displaystyle \frac{0.241}{(0.387)} 1.4900\\
a &= 1
\end{aligned}
\end{equation}
$


Now, we have:


$
\begin{equation}
\begin{aligned}
T & = 1 (d)^{1.4990} \quad \text{ where } \quad 1.4990 \approx 1.50\\
T & = d^{1.5}\\
T &= d^{3/2} \qquad \text{(by squaring both sides of the equation)}\\
T^2 &= d^3
\end{aligned}
\end{equation}
$


Therefore, our model corroborates the Kepler's Third Law.
$T^2 = k d^3$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...