Sunday, December 3, 2017

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 84

Suppose that $\displaystyle \nu - c \left( \frac{r}{R} \right)^2 \ln \left( \frac{r}{R} \right)$ where $c$ is constant. Find
$\displaystyle \text{a.) } \lim_{R \to r^+} \nu \qquad \text{b.) } \lim_{r \to 0^+} \nu$



$
\begin{equation}
\begin{aligned}
\text{a.) } \lim_{R \to r^+} - c \left( \frac{r}{R} \right)^2 \ln \left( \frac{r}{R} \right) &= - c \left(\frac{r}{r} \right)^2 \ln \left( \frac{r}{r} \right)\\
\\
&= -c (1)^2 \ln(1)\\
\\
&= -c \cdot 0\\
\\
&= 0
\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}
\text{b.) } \lim_{r \to 0^+} - c \left( \frac{r}{R} \right)^2 \ln \left( \frac{r}{R} \right) &= \lim_{r \to 0^+} \left[ \left( \frac{r}{R} \right)^2 \frac{\frac{1}{R}}{\frac{r}{R}} + \ln \left( \frac{r}{R} \right) \cdot 2 \left[ \frac{r}{R} \right] \left[ \frac{1}{R} \right] \right]\\
\\
&= \lim_{r \to 0^+} -c \left[ \left( \frac{r}{R} \right)^2 \frac{1}{R} \left( \frac{R}{r} \right) + 2 \ln \left( \frac{r}{R} \right) \left( \frac{r}{R^2} \right) \right]\\
\\
&= \lim_{r \to 0^+} -c \left[ \frac{r}{R^2} +2 \ln \left( \frac{r}{R} \right) \left( \frac{r}{R^2} \right) \right]\\
\\
&= \lim_{r \to 0^+} -c \left( \frac{r}{R^2} \right) \left[ 1 + 2 \ln \left( \frac{r}{R} \right) \right]
\end{aligned}
\end{equation}
$


If we evaluate the limit, we will still get an indeterminate form, so we must apply the L'Hospital's Rile once more...

$
\begin{equation}
\begin{aligned}
&= \lim_{r \to 0^+} -c \left[ \frac{r}{R^2} \cdot 2 \frac{\left(\frac{1}{R}\right)}{\frac{r}{R}} + \frac{1}{R^2} \cdot 2 \ln \left( \frac{r}{R} \right)\right]\\
\\
&= \lim_{r \to 0^+} -c \left[ \frac{r}{R^2} \cdot 2 \left( \frac{1}{R} \right) \left( \frac{R}{r} \right) + \frac{1}{R^2} \left( 1 + 2 \ln \left(\frac{r}{R}\right)\right) \right]\\
\\
&= \lim_{r \to 0^+} -c \left[ \frac{2}{R^2} + \frac{1}{R^2} + \frac{2}{R^2} \ln \left(\frac{r}{R}\right) \right]\\
\\
&= \lim_{r \to 0^+} \frac{-c}{R^2} \left[ 3 + 2 \ln \left(\frac{r}{R}\right)\right]\\
\\
&= \frac{-c}{R^2} \left[ 3 + 2 \ln \left( \frac{0^+}{12} \right) \right]\\
\\
&= \infty
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...