Sunday, December 3, 2017

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 22

At what rate is the distance from he particle to the origin changing at this moment?

Given:

$\qquad $ equation of the curve $y = \sqrt{x}$

$\qquad $ Point $(4,2)$

$\qquad \displaystyle \frac{dx}{dt} = 3 cm/s $

Required: Rate of change of distance of the particle to the origin

Solution:

Using the distance formula from point $(x, y)$ on the curve to the origin will result to..

$\displaystyle d = \sqrt{(y - 0)^2 + (x - 0)^2} \qquad$ Equation 1

Taking the derivative of the equation with respect to time we get


$
\begin{equation}
\begin{aligned}

\frac{dd}{dt} =& \frac{\displaystyle \cancel{2}y \frac{dy}{dt} + \cancel{2} x \frac{dx}{dt}}{\cancel{2} \sqrt{y^2 + x^2}} \qquad \text{Equation 2}

\end{aligned}
\end{equation}
$


To get $\displaystyle \frac{dy}{dt}$, we take the derivative of the given curve with respect to time.


$
\begin{equation}
\begin{aligned}

y =& \sqrt{x}
\\
\\
\frac{dy}{dt} =& \frac{\displaystyle \frac{dx}{dt}}{2 \sqrt{x}} = \frac{3}{2 \sqrt{4}} = \frac{3}{4} cm/s

\end{aligned}
\end{equation}
$


Now, to get the required answer, we use equation 2 and substituting all the informations that we obtain


$
\begin{equation}
\begin{aligned}

& \frac{ddt}{dt} = \frac{\displaystyle 2 \left( \frac{3}{4} \right) + 4 (3)}{\sqrt{2^2 + 4^2}}
\\
\\
& \boxed{\displaystyle \frac{dd}{dt} = 3.02 cm/s}
\end{aligned}
\end{equation}
$


To get the unknown, we derive equation 1 with respect to time


$
\begin{equation}
\begin{aligned}

z^2 =& x^2 + y^2
\\
\\
\cancel{2} z \frac{dz}{dt} =& \cancel{2}x \frac{dx}{dt} + \cancel{2} y \frac{dy}{dt}
\\
\\
\frac{dz}{dt} =& \frac{\displaystyle x \frac{dx}{dt} + y \frac{dy}{dt} }{z}
\\
\\
\frac{dz}{dt} =& \frac{50(25) + 120 (60)}{130}
\\
\\
&\boxed{\displaystyle \frac{dz}{dt} = 65 mi/h}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...