Saturday, December 23, 2017

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 49

Find the equation of the tangent line of the curve $\displaystyle y = \frac{2x}{x + 1}$ at Point $(1,1)$

Required:

Equation of the tangent line to the curve at $P(1,1)$

Solution:

Let $y' = m$ (slope)


$
\begin{equation}
\begin{aligned}

\qquad y' = m =& \frac{\displaystyle (x + 1) \frac{d}{dx} (2x) - \left[ (2x) \frac{d}{dx} (x + 1) \right]}{(x + 1)^2}
&& \text{Apply Quotient Rule}
\\
\\
\qquad m =& \frac{(x + 1) (2) - (2x)(1)}{(x + 1)^2}
&& \text{Simplify the equation}
\\
\\
\qquad m =& \frac{\cancel{2x} + 2 - \cancel{2x}}{(x + 1)^2}
&& \text{Combine like terms}
\\
\\
\qquad m =& \frac{2}{(x + 1)^2}
&& \text{Substitute value of $x$ which is 1}
\\
\\
\qquad m =& \frac{2}{(1 + 1)^2}
&& \text{}
\\
\\
\qquad m =& \frac{2}{4}
&& \text{Reduce to lowest term}
\\
\\
\qquad m =& \frac{1}{2}
&&

\end{aligned}
\end{equation}
$


Solving for the equation of the tangent line:


$
\begin{equation}
\begin{aligned}

\qquad y - y_1 =& m(x - x_1)
&& \text{Substitute the value of the slope $(m)$ and the given point}
\\
\\
\qquad y - 1 =& \frac{1}{2} (x - 1)
&& \text{Add 1 to each side}
\\
\\
\qquad y =& \frac{x - 1}{2} + 1
&& \text{Get the LCD}
\\
\\
\qquad y =& \frac{x - 1 + 2}{2}
&& \text{Combine like terms}
\\
\\
\qquad y =& \frac{x + 1}{2}
&& \text{Equation of the tangent line to the curve at $P(1, 1)$}
\\
\\

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...