Thursday, December 28, 2017

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 1

Determine the limits that exist. If the limits does not exist, explain why. Given that
$
\quad \lim\limits_{x \rightarrow 2} f(x) = 4 \qquad \lim\limits_{x \rightarrow 2} g(x) = -2 \qquad \lim\limits_{x \rightarrow 2} h(x) = 0
$


$
\begin{equation}
\begin{aligned}
\text{(a) }& \lim\limits_{x \to 2} \quad [f(x) + 5g(x)] &
\text{(b) }& \lim\limits_{x \to 2} \quad [g(x)]^3\\
\text{(c) }& \lim\limits_{x\to 2} \quad \sqrt{f(x)} &
\text{(d) }& \lim\limits_{x\to 2} \quad \frac{3f(x)}{g(x)}\\
\text{(e) }& \lim\limits_{x\to 2} \quad \frac{g(x)}{h(x)} &
\text{(f) }& \lim\limits_{x\to 2} \quad \frac{g(x)h(x)}{f(x)}
\end{aligned}
\end{equation}
$



a.) $\lim\limits_{x \to 2} \quad [f(x) + 5g(x)]$

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \quad[f(x) + 5g(x)] & = \lim\limits_{x \rightarrow 2} f(x) + \lim\limits_{x \rightarrow 2} 5 g(x) && \text{(Substitute the given values.)}\\
\lim\limits_{x \rightarrow 2} \quad[f(x) + 5g(x)] & = 4 +5(-2) & &\text{(Simplify.)}\\
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 2} \quad[f(x) + 5g(x)] = -6 }
$


b.)$ \lim\limits_{x \to 2} \quad [g(x)]^3$

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \quad [g(x)]^3 &&& \text{(Substitute the given value.)}\\
\lim\limits_{x \rightarrow 2} \quad [g(x)]^3 &= (-2)^3 && \text{(Simplify)}\\
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 2} \quad [g(x)]^3 = -8}
$


c.) $\lim\limits_{x\to 2} \quad \sqrt{f(x)}$

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \quad \sqrt{f(x)} &&& \text{(Substitute the given value)}\\
\lim\limits_{x \rightarrow 2} \quad \sqrt{f(x)} &= \sqrt{4} && \text{(Simplify)}\\
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 2} \quad \sqrt{f(x)} = 2}
$


d.) $\lim\limits_{x\to 2} \quad \frac{3f(x)}{g(x)}$

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \quad \displaystyle\frac{3f(x)}{g(x)} &&& \text{(Substitute the given values)}\\
\lim\limits_{x \rightarrow 2} \quad \displaystyle\frac{3f(x)}{g(x)} &= \frac{3(4)}{-2} && \text{(Simplify)}\\
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 2} \quad \displaystyle\frac{3f(x)}{g(x)} =-6}
$


e.) $ \lim\limits_{x\to 2} \quad \frac{g(x)}{h(x)} $

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \quad \displaystyle \frac{g(x)}{h(x)}& \qquad \qquad \qquad \text{(Substitute the given values)}\\
\lim\limits_{x \rightarrow 2} \quad \displaystyle \frac{g(x)}{h(x)}& = \frac{-2}{0}\\
\end{aligned}
\end{equation}\\
\boxed{\text{Limit does not exist, the function is undefined because denominator is zero.} }
$


f.) $\lim\limits_{x\to 2} \quad \frac{g(x)h(x)}{f(x)}$

$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \quad \displaystyle \frac{g(x)h(x)}{f(x)} & && \text{(Substitute the given values)}\\
\lim\limits_{x \rightarrow 2} \quad \displaystyle \frac{g(x)h(x)}{f(x)} &= \frac{(-2)(0)}{4} && \text{(Simplify)}
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 2} \quad \displaystyle \frac{g(x)h(x)}{f(x)} = 0}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...