Friday, December 15, 2017

College Algebra, Chapter 3, Review Exercises, Section Review Exercises, Problem 58

Find the average rate of change of the function $f(x) = (x+1)^2$ between $x = a$ and $x = a+h$
Recall that the formula for the average rate is.
$\displaystyle \frac{f(b) - f(a)}{b - a}$

$
\begin{equation}
\begin{aligned}
\frac{f(b) - f(a)}{b - a} &= \frac{f(a+h)-f(a)}{(a+h)-a} = \frac{(a+h+1)^2-(a+1)^2}{h}\\
\\
&= \frac{\left[a^2 + ah + a + ah + h^2 + h + a + h + 1 \right]- \left[ a^2 + 2a + 1 \right]}{h}\\
\\
&= \frac{a^2 + 2ah + 2a + h^2+ 2h + 1 - a^2 - 2a - 1}{h}\\
\\
&= \frac{2ah + h^2 + 2h}{h}\\
\\
&= \frac{h(2a + h + 2)}{h}\\
\\
&= 2a + h + 2 \\
\\
&= 2(a+1) + h
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...