Tuesday, July 11, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 34

Determine the integral $\displaystyle \int \tan^2 x \sec x dx$


$
\begin{equation}
\begin{aligned}

\int \tan^2 x \sec x dx =& \int (\sec^2 x - 1) \sec x dx
\qquad \text{Apply Trigonometric Identity } \sec^2 x = \tan^2 x + 1
\\
\\
\int \tan^2 x \sec x dx =& \int (\sec^3 x - \sec x) dx
\\
\\
\int \tan^2 x \sec x dx =& \int \sec^3 x dx - \int \sec x dx

\end{aligned}
\end{equation}
$


We integrate the equation term by term

@ 1st term, using integration by parts

$ \int \sec^3 x dx = \int udv$

where


$
\begin{equation}
\begin{aligned}

u =& \sec x
\\
\\
du =& \sec x \tan x dx
\\
\\
v =& \tan x
\\
\\
dv =& \sec^2 x dx

\end{aligned}
\end{equation}
$


then


$
\begin{equation}
\begin{aligned}

\int \sec^3 x dx =& \int udv
\\
\\
\int \sec^3 x dx =& uv - \int v du
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \tan x \cdot \sec x \tan x dx
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \sec x \tan^2 x dx
\qquad \text{Apply Trigonometric Identity } \sec^2 x = \tan^2 x + 1
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \sec x (\sec^2 x - 1) dx
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int (\sec^3 x - \sec x) dx
\\
\\
\int \sec^3 x dx =& \sec x \tan x - \int \sec^2 x dx + \int \sec x dx
\qquad \text{Combine like terms}


\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

\int \sec^3 x dx + \int \sec^2 x dx =& \sec x \tan x + \int \sec x dx
\\
\\
2 \int \sec^3 x dx =& \sec x \tan x + \int \sec x dx
\\
\\
2 \int \sec^3 x dx =& \sec x \tan x + \ln (\sec x + \tan x) + c
\\
\\
\int \sec^3 x dx =& \frac{\sec x \tan x + \ln (\sec x + \tan x)}{2} + c


\end{aligned}
\end{equation}
$


@ 2nd term

$\int \sec x dx = \ln (\sec x + \tan x) + c$

Combine the results of the integration term by term


$
\begin{equation}
\begin{aligned}

\int \tan^2 x \sec x dx =& \frac{\sec x \tan x + \ln(\sec x + \tan x)}{2} - \ln (\sec x + \tan x) + c
\\
\\
\int \tan^2 x \sec x dx =& \frac{\sec x \tan x + \ln(\sec x + \tan x) - 2 \ln (\sec x + \tan x)}{2} + c
\\
\\
\int \tan^2 x \sec x dx =& \frac{\sec x \tan x - \ln (\sec x + \tan x)}{2} + c
\\
\\
\text{ or} &
\\
\\
\int \tan^2 x \sec x dx =& \frac{1}{2} (\sec x \tan x - \ln (\sec x + \tan x)) + c


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...