Sunday, July 30, 2017

sum_(n=2)^oo (-1)^n/(nlnn) Determine whether the series converges absolutely or conditionally, or diverges.

To determine the convergence or divergence of the series sum_(n=2)^oo (-1)^n/(nln(n)) , we may apply Alternating Series Test.
In Alternating Series Test, the series sum (-1)^n a_n is convergent if:
1) a_n is monotone and decreasing sequence.
2) lim_(n-gtoo) a_n =0
3) a_ngt=0
For the series sum_(n=2)^oo (-1)^n/(nln(n)) , we have:
a_n = 1/(nln(n)) which is a positive, continuous, and decreasing sequence from N=2.
Note: As "n " increases, the nln(n) increases then 1/(nln(n)) decreases.
Then, we set-up the limit as :
lim_(n-gtoo)1/(nln(n))= 1/oo =0
By alternating series test criteria, the series sum_(n=2)^oo (-1)^n/(nln(n))  converges.
The series sum_(n=2)^oo (-1)^n/(nln(n))  has positive and negative elements. Thus, we must verify if the series converges absolutely or conditionally. Recall:
a) Absolute Convergence:  sum a_n  is absolutely convergent if sum|a_n|   is convergent.  
b) Conditional Convergence:  sum a_n is conditionally convergent if sum|a_n|  is divergent and sum a_n  is convergent.  
We evaluate the sum |a_n| as :
sum_(n=2)^oo |(-1)^n/(nln(n))|=sum_(n=2)^oo 1/(nln(n))
Applying integral test for convergence, we evaluate the series as:
int_2^oo1/(nln(n))dn=lim_(n-gtoo) int_2^t 1/(nln(n))dn
Apply u-substitution: u =ln(n) then du =1/ndn .
int 1/(nln(n))dn =int 1/(ln(n))*1/ndn
                       =int 1/u du
                        =ln|u|
Plug-in u=ln(n) on the indefinite integral ln|u| , we get:
int_2^t 1/(nln(n))dn =ln|ln(n)||_2^t
Applying definite integral formula: F(x)|_a^b = F(b)-F(a) .
ln|ln(n)||_2^t =ln|ln(t)|-ln|ln(2)|
Then, the limit becomes:
lim_(n-gtoo) int_2^t1/(nln(n))dn =lim_(n-gtoo) [ln|ln(t)|-ln|ln(2)|]
                                   =lim_(n-gtoo)ln|ln(t)|-lim_(n-gtoo)ln|ln(2)|
                                   = oo - ln|ln(2 )|
                                   =oo
int_2^oo1/(nln(n))dn=oo implies the series  sum_(n=2)^oo |(-1)^n/(nln(n))| diverges.
 
Conclusion:  
The series sum_(n=2)^oo (-1)^n/(nln(n)) is conditionally convergent sincesum |a_n| as   sum_(n=2)^oo |(-1)^n/(nln(n))| is divergent and sum a_n as sum_(n=2)^oo (-1)^n/(nln(n)) is convergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...