Wednesday, July 26, 2017

Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 43

Indefinite integrals are written in the form of int f(x) dx = F(x) +C
where: f(x) as the integrand
F(x) as the anti-derivative function
C as the arbitrary constant known as constant of integration
For the given problem int sin(2x)cos(4x) dx or intcos(4x)sin(2x) dx has a integrand in a form of trigonometric function. To evaluate this, we apply the identity:
cos(A)sin(B) =[sin(A+B) -sin(A-B)]/2
The integral becomes:
int cos(4x)sin(2x) dx = int[sin(4x+2x) -sin(4x-2x)]/2dx
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int [sin(4x+2x) -sin(4x-2x)]/2dx = 1/2int[sin(4x+2x) -sin(4x-2x)]dx
Apply the basic integration property: int (u+v) dx = int (u) dx + int (v) dx .
1/2 *[int sin(4x+2x)dx+int sin(4x-2x)dx]
Then apply u-substitution to be able to apply integration formula for cosine function: int sin(u) du= -cos(u) +C .
For the integral:int sin(4x+2x)dx , we let u = 4x+2x =6x then du= 6 dx or (du)/6 =dx .
int sin(4x+2x)dx=intsin(6x) dx
=intsin(u) *(du)/6
= 1/6 int sin(u)du
=-1/6cos(u) +C
Plug-in u =6x on -1/6 cos(u) +C , we get:
int sin(4x+2x)dx= -1/6 cos(6x) +C
For the integral: intsin(4x-2x)dx , we let u = 4x-2x =2x then du= 2 dx or (du)/2 =dx .
intsin(4x-2x)dx=intsin(2x) dx
=intsin(u) *(du)/2
= 1/2 int sin(u)du
= -1/2cos(u) +C
Plug-in u =2x on -1/2 cos(u) +C , we get:
intsin(4x-2x)dx= -1/2 cos(2x) +C
Combing the results, we get the indefinite integral as:
intcos(4x)sin(2x) dx= 1/2*[ -1/6 cos(6x) -(-1/2 cos(2x))] +C
or -1/12 cos(6x) +1/4 cos(2x) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...