Saturday, July 29, 2017

College Algebra, Chapter 9, 9.3, Section 9.3, Problem 48

Determine the sum $\displaystyle 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... - \frac{1}{512}$.

Here the geometric sequence has $a = 1$ and $\displaystyle r = \frac{-1}{2}$, using the formula


$
\begin{equation}
\begin{aligned}

a_n =& ar^{n -1}
\\
\\
512 =& 1(2)^{n -1}
\\
\\
\ln 512 =& \ln 2^{n -1}
\\
\\
n - 1 =& \frac{\ln 512}{\ln 2}
\\
\\
n =& \frac{\ln 512}{\ln 2} + 1
\\
\\
n =& 10

\end{aligned}
\end{equation}
$



From the formula of geometric partial sum


$
\begin{equation}
\begin{aligned}

S_n =& a \frac{1 - r^n}{1 - r}
\\
\\
S_{10} =& 1 \left( \frac{\displaystyle 1 - \left( \frac{-1}{2} \right)^{10} }{\displaystyle 1 - \left( \frac{-1}{2} \right) } \right)
\\
\\
S_{10} =& \frac{1025}{1536}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...