Tuesday, July 11, 2017

Single Variable Calculus, Chapter 2, Review Exercises, Section Review Exercises, Problem 20

Show that the statement $\lim \limits_{x \to 0} \sqrt[3]{x} = 0$ using the precise definition of a limit.

Based from the definition,

$\qquad$ if $0 < | x - a | < \delta $ then $|f(x) - L | < \varepsilon $

$\qquad$ if $0 < | x -0 | < \delta $ then $|\sqrt[3]{x} - 0| < \varepsilon$

That is,

$\qquad$ if $0 < | x | < \delta$ then $|\sqrt[3]{x}| < \varepsilon$

Or taking the cube of both sides of the inequality $|\sqrt[3]{x}| < \varepsilon$, we get

$\qquad$ if $ 0 < |x| < \delta$ then $|x| < \varepsilon^3$

The statement suggest that we should choose $\displaystyle \delta = \varepsilon^3$.

By proving that the assumed value of $\displaystyle \delta = \varepsilon^3$ will fit the definition.

$\qquad$ if $0 < |x| < \delta$ then,

$\qquad \quad$ $|\sqrt[3]{x}| < \sqrt[3]{\delta} = \sqrt[3]{\varepsilon^3} = \varepsilon$

Thus,

$\qquad$ if $0 < | x - 0 | < \delta $ then $|\sqrt[3]{x} -0 | < \varepsilon$

Therefore, by the precise definition of a limit

$\qquad$ $\lim \limits_{x \to 0} \sqrt[3]{x} = 0$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...