Wednesday, December 7, 2016

Single Variable Calculus, Chapter 2, 2.4, Section 2.4, Problem 14

Determine the values of $\delta$ that correspond to $\varepsilon = 0.1,$ $\varepsilon = 0.05$, and
$\varepsilon = 0.01$ for the $\lim\limits_{x \to 2}(5x-7) = 3$

@ $\varepsilon = 0.1$,


Based from the definition,

$
\begin{equation}
\begin{aligned}

\begin{array}{c}
\text{ if } |x -a| < \delta \text{ then } |f(x) - L| < \varepsilon\\
\text{ if } |x -2| < \delta \text{ then } |(5x-7)-3| < \varepsilon

\end{array}

\end{aligned}
\end{equation}
$


To satisfy inequality $| x - 2 | < \delta $

We want,

$
\begin{equation}
\begin{aligned}
|(5x-7)-3 |& < 0 .1 && \text{(Substitute the given values.)}\\
|5x-7-3 |& < 0 .1 && \text{(Simplify.)}\\
|5x-10 |& < 0 .1 && \text{(Factor.)}\\
5|x-2| & < 0 .1 && \text{(Divde both sides by 5.)}\\
|x-2| & < \displaystyle\frac{0.1}{5} && \text{(Simplify)}\\
|x-2| & < 0.02
\end{aligned}
\end{equation}\\
$


Hence,
$\quad \delta = 0.02$




@ $\varepsilon = 0.05$

$
\begin{equation}
\begin{aligned}
|(5x-7)-3 |& < 0 .05 && \text{(Substitute the given values.)}\\
|5x-7-3 |& < 0 .05 && \text{(Simplify.)}\\
|5x-10 |& < 0 .05 && \text{(Factor.)}\\
5|x-2| & < 0 .05 && \text{(Divde both sides by 5.)}\\
|x-2| & < \displaystyle\frac{0.05}{5} && \text{(Simplify)}\\
|x-2| & < 0.01
\end{aligned}
\end{equation}\\
$

Hence,
$\quad \delta = 0.01$

@ $\varepsilon = 0.01$

$
\begin{equation}
\begin{aligned}
|(5x-7)-3 |& < 0 .01 && \text{(Substitute the given values.)}\\
|5x-7-3 |& < 0 .01 && \text{(Simplify.)}\\
|5x-10 |& < 0 .01 && \text{(Factor.)}\\
5 |x-2| & < 0 .01 && \text{(Divde both sides by 5.)}\\
|x-2| & < \displaystyle\frac{0.01}{5} && \text{(Simplify)}\\
|x-2| & < 0.002
\end{aligned}
\end{equation}\\
$

Hence,
$\quad \delta = 0.002$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...