Friday, December 30, 2016

College Algebra, Chapter 2, 2.4, Section 2.4, Problem 60

Use slopes to determine whether the given points are collinear.

a.) $(1, 1), (3,9), (6,21)$

b.) $(-1,3), (1,7), (4, 15)$

a.) Let $m_1$ be the slope through points $(1,1)$ and $(3, 9)$, $m_2$ be the slope through points $(1, 1)$ and $(6, 21)$, $m_3$ be the slope through $(3, 9)$ and $(6, 21)$.


$
\begin{equation}
\begin{aligned}

m_1 =& \frac{9 - 1}{3 - 1} = \frac{8}{2} = 4
\\
\\
m_2 =& \frac{21 - 1}{6 - 1} = \frac{20}{5} = 4
\\
\\
m_3 =& \frac{21 - 9}{6 - 3} = \frac{12}{3} = 4

\end{aligned}
\end{equation}
$


Since $m_1 = m_2 = m_3$, all the points are collinear.

b.) Similarly, let $m_1$ be the slope through $(-1, 3)$ and $(1, 7)$

$\qquad m_2$ be the slope through $(1,7)$ and $(4,15)$

$\qquad m_3$ be the slope through $(-1,3)$ and $(4, 15)$


$
\begin{equation}
\begin{aligned}

m_1 =& \frac{7 - 3}{1 - (-1)} = \frac{4}{2} = 2
\\
\\
m_2 =& \frac{15 - 7}{4 - 1} = \frac{8}{3}
\\
\\
m_3 =& \frac{15 - 3}{4 - (-1)} = \frac{12}{5}

\end{aligned}
\end{equation}
$


Since $m_1 \neq m_2 \neq m_3$, the points do not lie on the same line.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...