Monday, December 26, 2016

Single Variable Calculus, Chapter 5, Review Exercises, Section Review Exercises, Problem 18

Find the intergral 10sin(3πt)dt, if it exists.
If we let u=3πt, then du=3πdt, so dt=du3π. When t=0, u=0 and when t=1, u=3π. Therefore

10sin(3πt)dt=10sinudu3π10sin(3πt)dt=13π10sinudu10sin(3πt)dt=cosu|1010sin(3πt)dt=13π[cos(3π)+cos(0)]10sin(3πt)dt=13π(2)10sin(3πt)dt=23π

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...