Saturday, December 31, 2016

Calculus: Early Transcendentals, Chapter 4, 4.4, Section 4.4, Problem 43

lim_(x->0) cot(2x)sin(6x)
The function cot(2x)sin(6x) is undefined at x=0. So to take its limit, let's apply the L'Hospital's Rule. To do so, express it as a rational function.
=lim_(x->0) cos(2x)/sin(2x) * sin (6x) = lim_(x->0) (cos(2x)sin(6x))/sin(2x)
Then, take the derivative of the numerator and denominator.
=lim_(x->0) ((cos(2x)sin(6x))')/((sin(2x))')=lim_(x->0) (cos(2x)*cos(6x)*6 + (-sin(2x))*2*sin(6x)) / (cos(2x)*2)
=lim_(x->0) (6cos(2x)cos(6x) - 2sin(2x)sin(6x))/(2cos(2x))=lim_(x->0) (3cos(2x)cos(6x) - sin(2x)sin(6x))/(cos(2x))
And, plug-in x=0.
=(3cos(2*0)cos(6*0)-sin(2*0)sin(6*0))/cos(2*0)=(3*1*1-0)/1=3

Therefore, lim_(x->0) cot(2x)sin(6x) = 3 .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...