Wednesday, December 21, 2016

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 58

Find the area of the region bounded by the curves $y = \sin ^3 x$ and $y = \cos^3 x$ from $\displaystyle \frac{\pi}{4} \leq x \leq \frac{5\pi}{4}$



By using vertical strips,

$
\begin{equation}
\begin{aligned}
A &= \int^b_a \left( y_{\text{upper}} - y_{\text{lower}} \right) dx\\
\\
A &= \int^{5\pi/4}_{\pi/4} \left( \sin^3 x - \cos^3 x \right) dx\\
\\
A &= \int^{5\pi/4}_{\pi/4} \sin^3 x dx - \int^{5\pi/4}_{\pi/4} \cos^3 x dx
\end{aligned}
\end{equation}
$


For the first term,

$
\begin{equation}
\begin{aligned}
\int \sin^3 x dx &= \int \sin x \cdot \sin ^2 x dx && \text{, recall that } \sin ^2 x = 1 - \cos^2 x\\
\\
&= \int \sin x \left( 1 - \cos^2 x \right) dx = \int \left( \sin x - \sin x \cos^2 x \right) dx\\
\\
&= \int \sin x dx - \int \sin x \cos^2 x dx\\
\\
&= -\cos x - \int \cos^2 x dx
\end{aligned}
\end{equation}
$


To evaluate $\displaystyle \int \sin x \cos^2 x dx$, we let $u = \cos x$, then so
$du = -\sin x dx$

Thus,

$
\begin{equation}
\begin{aligned}
\int \sin x \cos^2 x dx &= \int u^2 (-du) = - \int u^2 du\\
\\
&= -\frac{u^3}{3} = -\frac{\cos^3x}{3}
\end{aligned}
\end{equation}
$


Hence,
$\displaystyle \int \sin^3 x dx = - \cos x + \frac{\cos^3 x}{3}$

For the term $\displaystyle \int \cos^3 x dx$

$
\begin{equation}
\begin{aligned}
\int \cos^3 x &= \int \cos x \cdot \cos^3 x dx \qquad \text{, recall that } \cos^2x = 1 - \sin^2 x\\
\\
&= \int \cos x (1-\sin^2 x) dx = \int \cos x dx - \int \cos x \sin^2 x dx\\
\\
&= \sin x - \int \cos x \sin^2 x dx
\end{aligned}
\end{equation}
$


To evaluate the right term, we let $u = \sin x$, so $du = \cos x dx$
$\displaystyle \int \cos x \sin^2 x dx = \int u^2 du = \frac{u^3}{3} = \frac{\sin^3 x}{3}$
Hence,
$\displaystyle \int \cos^3 x dx = \sin x - \frac{\sin^3 x}{3}$

Therefore, from the previous equation

$
\begin{equation}
\begin{aligned}
A &= \int \sin^3 x dx - \int \cos^3 x dx\\
\\
A &= - \cos x + \frac{\cos^3 x}{3} - \left[ \sin x - \frac{\sin^3 x}{3} \right]\\
\\
A &= \frac{1}{3} \left( \sin^3 x + \cos^3 x \right) - \sin x - \cos x
\end{aligned}
\end{equation}
$



Evaluating $\displaystyle x = \frac{\pi}{4}$ to $\displaystyle x = \frac{5\pi}{4}$


$
\begin{equation}
\begin{aligned}
A &= \frac{1}{3} \left[ \left( -\frac{\sqrt{2}}{2} \right)^3 + \left( -\frac{\sqrt{2}}{2} \right)^3 \right] - \left( -\frac{\sqrt{2}}{2} \right)^3 - \left( -\frac{\sqrt{2}}{2} \right)^3 -
\left[ \frac{1}{3} \left[ \left( \frac{\sqrt{2}}{2} \right)^3 + \left( \frac{\sqrt{2}}{2} \right)^3 \right] - \left( \frac{\sqrt{2}}{2} \right)^3 - \left( \frac{\sqrt{2}}{2} \right)^3 \right]\\
\\

A &= \frac{5 \sqrt{2}}{3} \text{ square units}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...