Wednesday, December 21, 2016

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 58

Find the area of the region bounded by the curves y=sin3x and y=cos3x from π4x5π4



By using vertical strips,

A=ba(yupperylower)dxA=5π/4π/4(sin3xcos3x)dxA=5π/4π/4sin3xdx5π/4π/4cos3xdx


For the first term,

sin3xdx=sinxsin2xdx, recall that sin2x=1cos2x=sinx(1cos2x)dx=(sinxsinxcos2x)dx=sinxdxsinxcos2xdx=cosxcos2xdx


To evaluate sinxcos2xdx, we let u=cosx, then so
du=sinxdx

Thus,

sinxcos2xdx=u2(du)=u2du=u33=cos3x3


Hence,
sin3xdx=cosx+cos3x3

For the term cos3xdx

cos3x=cosxcos3xdx, recall that cos2x=1sin2x=cosx(1sin2x)dx=cosxdxcosxsin2xdx=sinxcosxsin2xdx


To evaluate the right term, we let u=sinx, so du=cosxdx
cosxsin2xdx=u2du=u33=sin3x3
Hence,
cos3xdx=sinxsin3x3

Therefore, from the previous equation

A=sin3xdxcos3xdxA=cosx+cos3x3[sinxsin3x3]A=13(sin3x+cos3x)sinxcosx



Evaluating x=π4 to x=5π4


A=13[(22)3+(22)3](22)3(22)3[13[(22)3+(22)3](22)3(22)3]A=523 square units

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...