Wednesday, December 7, 2016

Calculus of a Single Variable, Chapter 3, 3.9, Section 3.9, Problem 14

If you evaluate the limit of function from the left, as x -> 0^- yields:
lim_(x->0^-) csc(2x) = lim_(x->0^-) 1/(sin(2x))
Replacing 2sinx*cosx for sin(2x) yields:
lim_(x->0^-) 1/(sin(2x)) = lim_(x->0^-) 1/(2sinx*cosx)
lim_(x->0^-) 1/(2sinx*cosx) = (1/2)lim_(x->0^-) 1/(sin x)*lim_(x->0^-) 1/(cos x)
Replacing 0^- for x yields:
(1/2)lim_(x->0^-) 1/(sin x)*lim_(x->0^-) 1/(cos x) = (1/2)*(1/(sin 0^-))*1/(cos 0^-)
(1/2)lim_(x->0^-) 1/(sin x)*lim_(x->0^-) 1/(cos x) = (1/2)*(-oo)*1 = -oo
If you evaluate the limit of function from the right, as x -> 0^+ yields:
lim_(x->0^+) csc(2x) = lim_(x->0^+) 1/(sin(2x))
lim_(x->0^+) 1/(sin(2x)) = (1/2)*(1/(sin 0^+))*1/(cos 0^+) = (1/2)*(+oo)*1 = +oo
Evaluating the limit of csc(2x) as x approaches to 0^- yields -oo , while evaluating the limit of csc(2x) as x approaches to 0^+ yields +oo, hence the two sided limit does not exist.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...