Saturday, August 6, 2016

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 49

Find an expression of the function in the form $f \circ g \circ h$

Given: $H(x) = \sec ^4 (\sqrt{x}) $

The function $H(x) = \sec ^4 (\sqrt{x})$ states that we first take the square root then we take the secant of the result and raise it to $4^{th}$ power. So we have,

$\fbox{$ \displaystyle h(x) = \sqrt{x} \qquad g(x) = \sec x \qquad f(x) =x^4$}$

Upon checking:


$
\begin{equation}
\begin{aligned}

f \circ g \circ h = & f(g(h(x)))\\
f(g(\sqrt{x})) = & \sec x\\
f(\sec \sqrt{x}) = & x^4\\
f \circ g \circ h = & \sec^4 \sqrt{x}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...