Sunday, August 28, 2016

int 1/sqrt(16-x^2) dx Find the indefinite integral

Given to solve ,
int 1/sqrt(16-x^2) dx
using the Trig substitutions
for sqrt(a-bx^2)
x= sqrt(a/b) sin(u)
so for ,
int 1/sqrt(16-x^2) dx --------(1)
so , x can be
x= sqrt(16/1) sin(u)
 = 4sin(u)
=> dx = 4cos(u) du
so,for (1) we get
int 1/sqrt(16-(4sin(u))^2) (4cos(u) du)
=int (4cos(u))/sqrt(16-16(sin(u))^2) du
= int (4cos(u))/(4sqrt(1-sin^2(u))) du
= int (4cos(u))/(4sqrt(cos^2(u))) du
=  int (4cos(u))/(4cos(u)) du
= int (1) du
= u+c
but x= 4sin(u)
=> x/4 = sin(u)
=> u = arcsin(x/4)
so ,
=> u+c
= arcsin(x/4)+c
so ,
int 1/sqrt(16-x^2) dx = arcsin(x/4)+c
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...