Wednesday, August 24, 2016

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 42

Find all real solutions of $\displaystyle 2y^2 - y - \frac{1}{2} = 0$.


$
\begin{equation}
\begin{aligned}

2y^2 - y - \frac{1}{2} =& 0
&& \text{Given}
\\
\\
2y^2 - y =& \frac{1}{2}
&& \text{Add } \frac{1}{2}
\\
\\
y^2 - \frac{y}{2} =& \frac{1}{4}
&& \text{Divide both sides by 2 to make the coefficient of $x^2$ equal to 1}
\\
\\
y^2 - \frac{y}{2} + \frac{1}{16} =& \frac{1}{4} + \frac{1}{16}
&& \text{Complete the square: add } \left( \frac{\displaystyle \frac{-1}{2}}{2} \right)^2 = \frac{1}{16}
\\
\\
\left( y - \frac{1}{4} \right)^2 =& \frac{5}{16}
&& \text{Perfect square, get the LCD of the right side of the equation}
\\
\\
y - \frac{1}{4} =& \pm \sqrt{\frac{5}{16}}
&& \text{Take the square root}
\\
\\
y =& \frac{1}{4} \pm \sqrt{\frac{5}{16}}
&& \text{Add } \frac{1}{4}
\\
\\
y =& \frac{1}{4} + \frac{\sqrt{5}}{4} \text{ and } y = \frac{1}{4} - \frac{\sqrt{5}}{4}
&& \text{Solve for } y
\\
\\
y =& \frac{1 + \sqrt{5}}{4} \text{ and } y = \frac{1 - \sqrt{5}}{4}
&& \text{Simplify}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...