Saturday, August 20, 2016

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 36

Determine the critical numbers of the function $\displaystyle h(p) = \frac{p - 1}{p^2 + 4}$


$
\begin{equation}
\begin{aligned}

h'(p) =& \frac{d}{dp} \left( \frac{p - 1}{p^2 + 4} \right)
\\
\\
h'(p) =& \frac{\displaystyle (p^2 + 4) \frac{d}{dp} (p - 1) - (p-1) \frac{d}{dp} (p^2 + 4)}{(p^2 + 4)^2}
\\
\\
h'(p) =& \frac{(p^2 + 4) (1) - (p -1)(2p) }{(p^2 + 4)^2}
\\
\\
h'(p) =& \frac{p^2 + 4 - (2p^2 - 2p)}{(p^2 + 4)^2}
\\
\\
h'(p) =& \frac{p^2 + 4 - 2p^2 + 2p}{(p^2 + 4)^2}
\\
\\
h'(p) =& \frac{-p^2 + 2p + 4}{(p^2 + 4)^2}

\end{aligned}
\end{equation}
$


Solving for critical numbers


$
\begin{equation}
\begin{aligned}

& h'(p) = 0
\\
\\
& 0 = \frac{-p^2 + 2p + 4}{(p^2 + 4)^2}
\\
\\
& (p^2 + 4)^2 \left[ 0 = \frac{-p^2 + 2p + 4}{\cancel{(p^2 + 4)^2}} \right] \cancel{(p^2 + 4)^2}
\\
\\
& 0 = -p^2 + 2p + 4
\\
\\
& \text{ or }
\\
\\
& p^2 - 2p - 4 = 0

\end{aligned}
\end{equation}
$


Using Quadratic Equation


$
\begin{equation}
\begin{aligned}

p =& \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\\
\\
p =& \frac{-(-2) \pm \sqrt{(-2)^2 - (4)(1)(-4)} }{2(1)}
\\
\\
p =& \frac{2 \pm \sqrt{4 + 16}}{2}
\\
\\
p =& \frac{2 \pm \sqrt{20}}{2}
\\
\\
p =& \frac{2 \pm \sqrt{(4)(5)}}{2}
\\
\\
p =& \frac{2 \pm 2 \sqrt{5}}{2}
\\
\\
p =& \frac{\cancel{2} (1 \pm \sqrt{5})}{\cancel{2}}
\\
\\
p =& 1 \pm \sqrt{5}

\end{aligned}
\end{equation}
$


Therefore, the critical numbers are $p = 1 + \sqrt{5}$ and $p =1 - \sqrt{5}$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...